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Abstract: Combinations of hydrogeological and geophysical data are increasingly used 
in hydrogeological site characterization. Although a wide range of methods to 
combine hydrogeological and geophysical data are presented in the literature, 
most investigations focus on development or application of a single method, 
and there have been few attempts to compare different methods. Here we 
review the choices that must be made in any hydrogeophysical parameter 
estimation effort, including model parameterization, the petrophysical 
relationship, and a-priori information. We distinguish between three classes of 
hydrogeophysical parameter estimation: direct mapping; integration methods; 
and joint inversion methods. We provide five examples that illustrate the 
different merits of those classes of methods. We conclude that direct mapping 
and integration methods, such as co-kriging, have proven their worth in 
hydrogeophysical parameter estimation. However, we argue that joint 
inversion methods might provide fundamental improvements because such 
methods facilitate information sharing and they form a consistent framework 
for addressing uncertainty and the worth of different data types. 
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1.1 Introduction 

The potential benefits of including geophysical data in hydrogeological 
site characterization have been stated numerous times (e.g., Ezzedine et al., 
1999; Hubbard et al., 1999; Chen et al., 2001; Hubbard and Rubin, 2005). 
The principle reason for the growing interest in using geophysical methods 
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in hydrogeological studies is that geophysics may provide spatially 
distributed models of physical properties in regions that are difficult to 
sample using conventional hydrological wellbore methods (e.g., Butler, 
2004). The geophysical models often reveal more details compared with 
hydrogeological estimates derived from hydrogeological data, such as pump 
tests and observations of hydraulic heads. Furthermore, geophysical methods 
are less invasive compared with hydrogeological methods and they are 
comparatively cheap. Therefore, geophysical surveys can improve 
hydrogeological characterization if we could relate the geophysical and 
hydrogeological properties in an appropriate way. The added value of 
including geophysics in hydrogeological characterization has become 
increasingly accepted and several published case studies clearly show the 
worth of including geophysics for different applications and data types (e.g., 
see reviews by Hyndman and Tronicke, 2005; Goldman et al., 2005; Daniels 
et al., 2005). However, the success of a given hydrogeophysical case-study is 
dependent on many different factors and it is often difficult to develop an 
opinion a-priori about the applicability of a method at another site or for 
another application. Here, we discuss some of the choices that need to be 
considered in a characterization effort and point out similarities and 
fundamental differences between different hydrogeophysical approaches 
presented in the literature. 

The integration of hydrogeological and geophysical data sets is a 
complex process that often entails consideration of several different factors, 
such as: 
 

• the measurement support volume is dependent on the 
characterization method; 

• the models have space-varying resolution that depend on the data 
type, survey design, geological characteristics, and other factors; 

• the effects of measurement errors and simplified assumptions are 
difficult to assess; 

• an infinite number of models can often explain a finite number of 
noisy data.  

 
Because of non-uniqueness, we need to state a preference for a certain type 
of model (e.g., the smoothest, the least number of model parameters, etc.) 
and it is not always clear how this preference effect the outcome of an 
investigation. Our problem of hydrogeophysical parameter estimation is 
further complicated because relationships between geophysical and 
hydrogeological parameters are often: 
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• non-unique; 
• poorly understood; and 
• non-stationary. 

 
Reviews of petrophysical relationships for hydrogeological investigations 
are given by Lesmes and Friedman (2005) and Pride (2005). 

In section 1.2, we discuss some critical choices that should be considered 
prior to the hydrogeophysical parameter estimation effort, such as: project 
objectives and available data (section 1.2.1); model parameterization 
(section 1.2.2); petrophysical relationship (section 1.2.3); a-priori 
information (section 1.2.4); optimization or Monte Carlo methods (section 
1.2.5), objective functions (section 1.2.6); and at which stage to establish the 
link between geophysics and hydrogeology (section 1.2.7). We discuss three 
categories of hydrogeophysical parameter estimation, which we refer to as 
direct mapping (section 1.3), integration methods (section 1.4), and joint 
inversion methods (section 1.5). We acknowledge that not all research falls 
cleanly into a single category. For example, McKenna and Poeter (1995) 
used a geostatistical indicator simulation to define zonation Nonetheless, we 
find that this classification scheme is useful for the purposes of this review, 
and we give several case-studies to illustrate the merits and limitations of 
these categories (section 1.3-1.5). We conclude this chapter with a summary 
and outlook discussion (section 1.6). 

We hope that this chapter will help the reader in considering the factors 
important for hydrogeophysical characterization, and in developing a 
hydrogeophysical parameter estimation approach for their specific problem 
of interest. 

1.2 Critical choices 

Throughout this chapter we group available data into geophysical and 
hydrogeological data. These data are further grouped into measurements of 
system properties (e.g., permeability) and measurements of state variables 
(e.g., apparent resistivity, seismic travel-times, hydraulic head, and 
breakthrough times of tracer). Strictly speaking, measurements of system 
properties in hydrogeological site-characterization do not exist because these 
measurements are typically obtained by measuring other state variables from 
which an estimate is derived using a relationship that is valid under certain 
conditions (e.g., Butler, 2005). Rather, measurements of system properties 
denote estimates that have been made outside our estimation procedure and 
we must assume that they are known to a certain degree of accuracy. 



4 Niklas LindeP1P, Jinsong ChenP2P, Michael B. KowalskyP2P,
Susan HubbardP2P

 
1.2.1 Project objectives and available data 

The need for information about the structure of hydrogeological 
properties occurs in many applications and at many different scales. The 
objectives, site characteristics, and available geophysical and 
hydrogeological data vary on a case-by-case basis, and attempts to estimate 
hydrogeological properties using geophysical data must take these 
characteristics into account. In this chapter, we consider these characteristics 
as given (e.g., we do not consider experimental design). Instead, we attempt 
to provide some guidance on how to formulate a hydrogeophysical 
parameter estimation method that matches specific objectives and provides a 
level of detail that can be resolved given the available data. In practice, other 
factors related to available budget, expertise, and computational facilities 
will be influential in determining the approach taken.  

1.2.2 Model parameterization 

Model parameterization depends on the research objectives and the 
available data. Regularization is a necessary step towards defining a well-
posed inverse problem (e.g., Tikhonov and Arsenin, 1977). We must find 
ways to constrain model space in order to obtain meaningful results. We 
consider three approaches to model parameterization: zonation (e.g., 
Carrerra and Neuman, 1986a, b, c); geostatistical (e.g., Hoeksema and 
Kitanidis, 1984; Dagan, 1985); and Tikhonov regularization approaches 
(e.g., Tikhonov and Arsenin, 1977; Constable et al., 1987).  

Zonation is used in applications where we assume that the earth can be 
divided into a number of zones where the variations of a property within the 
zones are small compared with the variations between the zones. Possible 
applications where a zonation approach could be justified are the delineation 
of sand from interbedded clay layers or sediments from the underlying 
bedrock. The advantage of the zonation approach is that the number of 
model parameters can be relatively small and smoothness constraints in the 
inversion may thus be avoided. Auken and Christensen (2004) demonstrated 
that this approach is preferable when mapping large-scale hydrogeological 
units in sedimentary environments using electrical methods. Such an 
approach also allows straightforward incorporation of measurements of 
system properties derived from borehole logs (Auken and Christensen, 
2004). The zonation approach is probably the best approach when geological 
structure is apparent and formation boundaries are distinct (McLaughlin and 
Townley, 1996). However, the influence of the model parameterization is 
strong in zonation approaches and it might be difficult to reach conclusive 
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results (e.g., Constable et al., 1987). Hydrogeological inversion codes that 
fall into this category are non-linear regression models such as the freely 
available UCODE (Hill, 1992) and MODFLOWP (Poeter and Hill, 1998), 
where regularization is imposed through model parameterization and/or by 
keeping certain model parameters fixed. 

The geostatistical parameterization assumes that the parameter of interest 
is a spatial random variable with a certain correlation structure and 
sometimes a deterministic trend (e.g., Gómez-Hernández, 2005). This 
correlation structure typically includes a variance and integral scales that 
might vary in different directions (i.e., anisotropy). The geostatistical 
approach thereby decreases the number of effective parameters through 
spatial correlations and a known variance. A geostatistical parameterization 
is probably preferable when parameters vary in more or less random fashion 
and there is no clearly defined structure (McLaughlin and Townley, 1996). 

The dominant approach to geophysical inversion is a fine grid 
discretization, where regularization is achieved through smoothing (i.e., 
finding the model that fits the data with minimum structure), damping (i.e., 
finding the model that fits the data and is the closest to an initial model) or a 
combination of smoothing and damping (Tikhonov and Arsenin, 1977; 
Maurer et al., 1998). Maurer et al. (1998) showed that a known mean and 
spatial correlation structure of a system property can be described by a 
combination of smoothing and damping; thereby, indicating a strong 
similarity between Tikhonov regularization approaches and geostatistics. 
However, the perspective is quite different. Tikhonov regularization is 
imposed to find a unique model (i.e., to make an ill-posed inverse problem 
well-posed). However, in geostatistical formulations the model covariance 
structure is honoured because it is assumed to describe real characteristics of 
the site. Damping has recently also been introduced in geostatistics 
(Kitanidis, 1999). 

Our brief discussion on model parameterization shows that some 
understanding of the site characteristics is helpful in determining an 
appropriate model parameterization (e.g., Auken and Christensen, 2004). 
From this we can infer that resulting parameter estimates are not just 
determined by the data, but also by seemingly innocent choices of model 
parameterization and regularization.  

1.2.3 The petrophysical relationship 

How are geophysical and hydrogeological properties related? This is one 
of the most difficult questions in the efforts of hydrogeophysical parameter 
estimation. We should strive to choose a representation of the petrophysical 



6 Niklas LindeP1P, Jinsong ChenP2P, Michael B. KowalskyP2P, 
Susan HubbardP2P

 
relationship that reflects our understanding. This leads us to consider 
petrophysical relationships that are either: 
 

• physically or empirically based; 
• intrinsic or model-based; 
• parameterizable or non-parameterizable;  
• unique or non-unique; and 
• stationary or non-stationary. 

 
Below we briefly describe these petrophysical relationship 

characteristics. Since it is not within the scope of this chapter to provide 
detailed descriptions of physically based and empirical petrophysical 
relationships and the reader is referred to reviews given by Mavko et al. 
(1998), Lesmes and Friedman (2005), and references therein. 

1.2.3.1 Physically or empirically based petrophysical relationship 
Let us consider the problem of inferring water saturation in the vadose 

zone using radar data. In low loss material and for radar frequencies the EM 
wave velocity v (m/s) is related to the dielectric constant through (Davis and 
Annan, 1989): 

 ,c
κ

v ≈  (1) 

where c is the EM wave velocity in free space (3×108 m/s) and κ is the 
effective dielectric constant. An approximate value of the effective dielectric 
constant can be calculated using the so-called complex resistive index 
method (CRIM) (Tinga et al., 1973; Alharthi and Lange, 1987; Roth et al., 
1990):  

( ) ( )[ ,11
2

awwws SS κϕκϕκϕκ −++−= ]  (2) 

where φ is porosity, Sw is water saturation, κs, κw, and κa are the dielectric 
constants for the solid, water, and air components of the soil, respectively. 
By combining equations (1)-(2) we can estimate the water saturation if we 
have an estimate of porosity, radar velocity, and the permittivity of the earth 
material: 
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Using a physically based approach, it is straightforward to relate 
uncertainties in model parameters with uncertainties in the resulting 
estimate. As an example, we show confidence limits for the case where it is 
assumed that κs, φ, and υ are normally distributed, where κs has a mean of 4 
and a standard deviation of 1, φ has a mean of 0.35 and a standard deviation 
of 0.02, and that υ has a standard deviation of 1 m/µs (Figure 1). We see that 
substantial prediction errors in the estimation of saturation occur, even when 
parameters are well-defined and the structure of the petrophysical model is 
assumed to be known. For this example, the dominating cause of uncertainty 
is the uncertainty of κs. 

 

Figure 1. A petrophysical model between radar velocity, υ, and water saturation, Sw,based on 
the CRIM model. The resulting confidence intervals are shown assuming normally distributed 
random errors in the radar velocity, porosity, and the effective dielectric constant of the solid. 

Most often, we rely on semi-empirical relationships (such as Archie’s 
law; Archie, 1942) or purely empirical relationships (such as a linear 
regression between log electrical conductivity and log permeability 
measurements; Purvance and Andricevic, 2000a). These relationships are 
much more difficult to work with because (1) we need to estimate a site-



8 Niklas LindeP1P, Jinsong ChenP2P, Michael B. KowalskyP2P,
Susan HubbardP2P

 
specific relationship and (2) we have limited understanding of the validity of 
this relationship away from the calibration points. However, this is often the 
only possibility and several successful case studies are given in the literature 
(e.g., Purvance and Andricevic, 2000b; Hubbard et al., 2001). 

1.2.3.2 Intrinsic or model-based petrophysical relationship 
We define the intrinsic petrophysical relationship as the relationship 

between the true geophysical and hydrogeological properties; and we define 
the model based petrophysical relationship as the relationship between our 
geophysical and hydrogeological model parameters. The intrinsic 
relationship is unknown to us. Laboratory analysis might provide a good 
estimate, although it may be difficult to scale the relationship for use at the 
field scale (e.g., Moysey and Knight, 2004). Day-Lewis and Lane (2004) 
compared the correlation between a synthetic slowness (i.e., the inverse of 
velocity) structure and the estimated slowness structure derived from a 
hypothetical radar survey. They showed that the linear correlation factors 
between these two structures were space-varying, significantly less than one, 
a function of acquisition errors, survey geometry, and regularization. This 
implies that the model based petrophysical relationship is different from the 
intrinsic petrophysical relationship and that it might be non-stationary even 
if the intrinsic petrophysical relationship is stationary. This is problematic, 
because: 

 
• if we use a physically based relationship, such as (3), or a close 

approximation of the intrinsic relationship based on laboratory 
analysis, its predictive power will be significantly decreased if we 
use it to relate our estimated geophysical model with 
hydrogeological properties and it might give biased results;  

• an empirical relationship estimated by regression of collocated 
hydrogeological data and estimated geophysical parameters will not 
be strictly valid throughout the model domain even if all properties 
except the geophysical and hydrogeological parameters of interest 
are kept constant; and 

• relationships that we establish in the field are not only a function of 
hydrogeological characteristics, but also of acquisition errors, survey 
geometry, and regularization of the inverse problem. These 
campaign-related errors reduce the validity of the developed 
relationships for use at other sites. 

 
How large are these potential errors compared with other error sources 

and with regard to the accuracy needed to meet specific model objectives? It 
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is not always necessary to have very detailed estimates and the effects 
discussed above might be insignificant in certain applications, such as 
mapping of the interface between salt and freshwater in coastal aquifers 
where the formation factor is determined using borehole information and 
applied to large scale resistivity models. However, these effects are probably 
significant if we attempt to provide high-resolution characterization at the 
local scale in order to predict solute transport. 

1.2.3.3 Weak or no parameterization of the petrophysical 
relationship 

In some cases, a relationship between a geophysical and a 
hydrogeological parameter may not exist or it may be very weak. For 
example, Pride (2005) stated that there is no theoretical basis for a universal 
relationship between seismic velocity and permeability in porous media. 
However, site specific models may exist (Pride, 2005; Hubbard et al., 2001; 
Hyndman et al., 2000), although they may vary within short distances 
(Prasad, 2003). It has been argued that the logarithm of electrical 
conductivity and the logarithm of permeability have a linear relationship, but 
the slope is site-specific and it is very sensitive to clay content (Purvance and 
Andricevic, 2000a).  

In cases where the petrophysical relationships are weak, zonation 
approaches (see section 1.2.2) can potentially be useful to quantify the 
geometry of hydrofacies. Borehole information and tracer test data can 
subsequently be used to estimate the hydrogeological properties of these 
zones (e.g., Hyndman et al., 1994; Hyndman and Gorelick, 1996; McKenna 
and Poeter, 1995, see also section 1.5.1). Such an approach is useful when 
different facies have distinctly different geophysical properties because 
under such circumstances the determination of facies becomes relatively 
insensitive to errors in the geophysical data acquisition and the subsequent 
inversion. Alternatively, if we use a geostatistical parameterization or an 
Occam type of inversion we could impose restrictions on the model space. 
An example is provided by Gallardo and Meju (2004) who jointly inverted 
seismic refraction data and surface dc resistivity data by restricting the 
model space of the two models to models where the cross-gradients, t, of the 
models were zero. The cross-gradient in the case of one geophysical model, 
mg, and one hydrogeological model, mh, is defined as  

t=∇mg×∇mh. (4) 

This approach has yet not been incorporated in hydrogeophysics, but it is 
promising because structural similarity between models is emphasized 
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instead of a petrophysical relationship that is difficult to justify in many 
applications.  

In short, the representation of the petrophysical relationship is one of the 
most difficult tasks in hydrogeophysical parameter estimation. A 
precautionary attitude is recommended. 

1.2.4 A-priori information 

A-priori information is information about characteristics of the models 
that we get from other sources of information rather than the actual 
geophysical or hydrogeological data. Prior information in deterministic 
inversions is used to define bounds of possible models, such as ensuring that 
velocities are positive, or assuming that the electrical resistivities are below 
10 000 ohm-m in a sedimentary basin. These bounds should ideally 
represent information that is known without doubt. Stochastic inversion 
theory takes an additional step by assigning a probability distribution of the 
possible model parameters before any measurements are made (e.g., 
Tarantola, 1987). 

A-priori information is sometimes used to tune the model to get 
agreeable features of the solution or make it well-posed. This violates a pure 
use of a-priori information, but might be a good place to incorporate 
subjectivity, if needed. We agree with the ironic comment made by Jackson 
(1979) in discussing the use of a-priori information to resolve non-
uniqueness: “One disadvantage of the technique is that the assumptions 
which lie hidden in the abstractness of most methods are in this method left 
naked for the world to see”. An excellent tutorial to the use of a-priori 
information is Scales and Tenorio (2001), and Malinverno and Briggs (2004) 
provided a discussion on how hierarchical and empirical Bayes can be used 
to avoid assuming that the probability distribution function is known.   

1.2.5 Optimization or Monte Carlo methods 

Local optimization methods are the most common parameter estimation 
approaches and model uncertainties are typically evaluated around the 
solutions that minimize the objective function. Uncertainty is thus often 
described in terms of a standard deviation of the model parameters or 
through sensitivity analysis of what parameters are better determined than 
others. Furthermore, in a deterministic approach only uncertainties in the 
data are assumed. Uncertainty estimates performed in this way are often 
over-optimistic. Another form of uncertainty arises if the problem is strongly 
non-linear because it might result in local minima. There are ways to 
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decrease non-linearity, such as transformation of the data, weighting, and 
alternative parameterizations of the models. We can also assess the existence 
of local minima by trying different initial and prior models (e.g., Oldenburg 
and Li, 1999). Even if we find the global minimum it does not mean that we 
can disregard other local minima. An alternative is to carry out a global 
search to derive the posterior pdf of all model parameters. Markov chain 
Monte Carlo Methods (MCMC) are often performed for computational 
efficiency using the Metropolis-Hastings algorithm (e.g., Mosegaard and 
Tarantola, 1995) or Gibb’s sampling (e.g., Chen et al., 2003), as will be 
described in sections 1.4.3 and 1.5.3. 

1.2.6 Objective functions 

In this section, we discuss common objective functions used in different 
estimation procedures. The treatment is cursory and it is mainly given to 
illustrate in a simple fashion how different methods are interconnected and 
to provide relevant references. We also spend some time discussing Occam’s 
inversion because of its widespread use in geophysical inversion. 
Geophysical inverse theory is treated by Menke (1984), Parker (1994), and 
Tarantola (1987); an excellent review of hydrogeological inversion is given 
by McLaughlin and Townley (1996). A formalized treatment of stochastic 
forward and inverse modeling in hydrogeophysics is given by Rubin and 
Hubbard (2005).   

The data fit  is often defined as 2
dχ

[ ] [ ]),-(-2 mdmd FCF -1
d

T)(=dχ  (5) 

where d is an N×1 data vector (e.g., seismic travel times, mass fractions of 
tracer); F is a forward model operator;  is the inverse of the data 
covariance matrix. It is commonly assumed that d is uncorrelated, rendering 
the  a diagonal matrix that contains the inverses of the estimated 
variances of the observation errors; thus, more reliable data carry larger 
weight. Our data covariance matrix can either be estimated or assumed to 
take certain values if the method does not allow an error estimate. There is 
an implicit assumption of Gaussian errors in this formulation of the data fit. 
This is neither the only nor necessarily the best description of data fit, but it 
is without doubt the most commonly used. Huber (2003) provides a review 
of robust statistics and Finsterle and Najita (1998) discuss robust estimation 
in hydrogeology. 

1
dC−

1
dC−

A general description of the model norm assuming that the model 
parameters have a Gaussian distribution is 
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where m0 is an a-priori model of size M×1; and  is the inverse of the 
model covariance matrix, which characterizes the expected variability and 
correlation of model parameters. However, the model covariance matrix is 
often unknown and it might be restrictive to damp the model to be close to 
an initial model, if no good initial model exists. Therefore, other model 
norms are typically defined using different measures of roughness 
(Constable et al., 1987), e.g., based on the first derivatives of the model 
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The data fit and measures of model structure can be combined to 
formulate the most common objective functions.  

A weighted least-squares objective function (equation 5) is used when we 
do not have any a-priori information and when the inverse problem is well-
posed without adding a regularization term. However, this is typically not 
the case and we must impose a-priori information, justified or not. The 
corresponding objective function corresponds with the maximum a-
posteriori (MAP) estimate (e.g., Menke, 1984): 

[ ] [ ] .)-()-()-( TT mdmdmmmm 00 FCFC -1
d

-1
m )( -+=MAPφ  (9) 

This is a weighting of a-priori assumptions and data. However, we do not 
always have a good estimate of the model covariance and the data errors. 
Furthermore, the inverse problem may still not have a unique solution (e.g., 
the integral scales are extremely short). This is the reason why Occam types 
of inversion are so popular in geophysical applications. We briefly review 
Occam’s inversion (Constable et al., 1987), which was originally developed 
for plane-wave electromagnetic data, but has been applied to diverse 
problems, including resistivity tomography (e.g., the commercial software 
Res2DInv of Loke (1997)). The goal of Occam inversion is to minimize R1 
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(or any other measure of model roughness) subject to where  is 
the desired level of data misfit. We solve the problem by minimizing the 
penalty functional W

,2
*

2 χχ =d
2
*χ

λ(m) 

[ ] [ ]( ){ },-()-λ+)()(=)(W T-1T
λ mdCmdmmm -1

d FF∂∂  (10) 

where  acts as a trade-off parameter between the smooth well-conditioned 
problem defined by a heavy penalty of model roughness (i.e., λ is large) and 
the ill-conditioned problem defined by the data fit (i.e., λ is small). For each 
iteration a line search for the λ that minimize  if , or else for the 
maximum λ for which  is made. 

-1λ

2
dχ

2
*

2 χχ >d
2
*

2 χχ ≤d
Occam approaches fit the data to the level of the estimated data errors 

with the smoothest possible model. Thus, we must be careful in adopting 
Occam types of inversion in environmental applications. Occam’s inversion 
was developed for interpretation of magnetotelluric data, which is a 
technique that provides actual data error estimates and where we, due to the 
large depth of investigation, often have very limited a-priori information. 
Therefore, it is sensible to be as conservative as possible. However, this 
method provides only a single model that might have little useful relations to 
the earth that gave rise to the observed data (Ellis and Oldenburg, 1994) and 
our prior knowledge. For example, it might be of little value to try to infer 
the spatial correlation structure of the model property from an Occam 
inversion. In short, Occam’s inversion invariably provides models that are 
smoother than the true structure. Ellis and Oldenburg (1994) argue that we 
should construct alternative approaches that emphasizes the prior 
information and includes the observed data as a supplementary constraint. 
Please note that any a-priori model or model covariance matrix in principle 
could be included in the Occam formulation if the objective function to 
minimize is defined as (Siripunvaraporn and Egbert, 2000) 

[ ] [ ]{ },)-(λ)-()-()(W T-1T
λ mdmdmmmmm 00 FCFC -1

d
-1
m )( -+=  (11) 

which is identical to the MAP estimate (equation 9) if is reached for 
λ=1. 

2
*

2 χχ =d
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1.2.7 Direct mapping, integration methods, or joint inversion 

methods 

We divide hydrogeophysical parameter estimation approaches into three 
broad categories: (1) direct mapping; (2) integration methods; and (3) joint 
inversion methods. We define direct mapping as a transformation of a 
geophysical model into a hydrogeological model, where hydrogeological 
data are only used to develop a petrophysical relationship or provide a 
qualitative understanding of the relationship between the geophysical and 
hydrogeological property of interest. Direct mapping is discussed in Section 
1.3. Integration methods refer to cases where the geophysical inversion is 
performed independently of hydrogeological data, and vice versa. The task is 
to interpolate available data or inverse models given their uncertainties, 
petrophysical relationships, and a-priori information. This group includes 
well-known geostatistical approaches such as co-kriging and Bayesian 
formulations; they are discussed in Section 1.4. Finally, joint inversion 
methods refer to cases where geophysical or hydrogeological inversion also 
utilizes hydrogeological or geophysical data, respectively. This diverse 
group is discussed in Section 1.5. There are large differences within each 
category and significant overlaps may exist in many published studies (e.g., 
McKenna and Poeter, 1995; Hyndman and Gorelick, 1996). The critical 
choices discussed in Section 1.2 must be made regardless of our choice 
between direct mapping, integration methods and joint inversion methods. 
These choices are of fundamental importance and an attempt to provide 
some guidance was made in Section 1.2.  

Relying on a set of case studies, we now discuss the strengths and 
limitations of these three different categories of hydrogeophysical parameter 
estimation methods. The categories refer to the stage in which 
hydrogeological and geophysical properties are related. There are advantages 
in inferring this relation at an early stage, but it comes at a price, as is 
discussed in the following sections. Our primary focus is on joint inversion 
methods, because interesting developments are taking place in this area and 
they are much less reviewed than direct mapping and integration methods in 
the hydrogeophysical literature. 

The following discussion focuses only on applications within 
hydrogeophysics. We do not review the the vast literature on data integration 
and joint inversion in other fields, such as in the petroleum (e.g., Deutsch, 
2002) and mining engineering (e.g., Journel and Kyriakis, 2004) fields.  
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1.3 Direct mapping 

The simplest approach to hydrogeophysical parameter estimation is to 
transform the geophysical model into an estimate of hydrogeological 
structure using a petrophysical relationship. This is the only possibility if we 
do not have any hydrogeological data. Hydrogeological data are absent or 
scarce in many applications, e.g., if we want to map a fracture zone for a 
potential well in sub-Saharan Africa (e.g., Caruthers and Smith, 1992); if we 
want to make preliminary investigations to find a site that meets our research 
objectives (e.g., Hubbard et al., 2001); or map salt-water intrusion (e.g., 
Yang et al., 1999). Such examples probably make up most applications in 
environmental geophysics. In such cases, it is important to use all available 
information and geological understanding to define the best possible 
geophysical model; ideally performing joint inversion of different 
geophysical data sets (e.g., Meju, 1996; Gallardo and Meju, 2004). However, 
it is generally not advisable to transform a geophysical estimate into a 
hydrogeological estimate if a petrophysical relationship with reasonably high 
predictive power is not available. It is often better to acknowledge our 
ignorance about the relation between our geophysical model and the 
underlying hydrogeological system and instead give qualitative 
interpretations, such as locations of possible clay lenses or fracture zones. 
Quantitative models could potentially be developed at a later stage when 
hydrogeological data become available. However, there are cases where 
direct mapping can be used for high-resolution studies of hydrogeological 
parameters. Water content estimation using Ground Penetrating Radar 
(GPR) is one example where direct mapping is often acceptable, and it is 
discussed in the next section. 

1.3.1 Example 1: Estimation of water content 

In recent years, GPR has developed as a tool for mapping water content 
and movement within the vadose zone. A review of GPR concepts and 
applications in hydrogeological applications is provided by Annan (2005). 

As recently summarized by Huisman et al. (2003), a variety of GPR 
approaches have been successfully used to estimate soil water content, 
including the use of ground-based GPR ground-wave and reflection data, 
and GPR crosshole tomographic direct wave travel time data. With most 
approaches, the velocity is first estimated and is then converted to a 
dielectric constant using equation (1), which is then converted to water 
content using relationships such as equation (3). For example, Grote et al. 
(2003) used the GPR ground-wave travel time data to estimate volumetric 



16 Niklas LindeP1P, Jinsong ChenP2P, Michael B. KowalskyP2P,
Susan HubbardP2P

 
water content, and reported a volumetric water content RMS error of 0.011 
to 0.017 using 900 and 450 MHz antennas, respectively. Fisher (1992), 
Greaves et al., (1996), and van Overmeeren et al. (1997) used common 
midpoint (CMP) approaches to estimate water content. In general, the time 
required to collect CMP data makes this approach prohibitive for water 
content estimation over large areas, and the error associated with CMP 
velocity analysis is typically on the order of 10% (Tillard and Dubois, 1995, 
Greaves et al., 1996).  Common-offset GPR data are faster and easier to 
collect, although in order to estimate the velocity of the reflected wave, one 
must have information about the depth of the reflector. Grote et al. (2002) 
investigated the utility of the GPR common-offset approach using reflectors 
buried at a known depth, and found that this approach was accurate to within 
0.01. More recently, Lunt et al. (2005) used wellbore information together 
with common offset GPR reflection data to assess the error associated with 
the GPR water content reflection method under natural conditions. Lunt et 
al. (2005) found that the RMS water content error under natural conditions 
was 0.018. Hubbard et al. (2005) used the GPR reflection travel time data of 
Lunt et al. (2005), together with wellbore soil layer depth information within 
a Bayesian framework to estimate water content associated with an interface 
located 0.5-1.4 m below ground surface over a 2.5 acre field site.  

Crosshole radar methods are now used quite frequently to map or 
monitor water content (Hubbard et al., 1997; Binley et al., 2001; Peterson, 
2001; Alumbaugh et al., 2002). For tomographic acquisition, the transmitter 
and receiver position are varied until the entire interwell area is traversed by 
electromagnetic waves. Inversion algorithms are used to invert the GPR 
travel time data into velocity (e.g., Peterson, 2001), which are then translated 
into dielectric constant using equation (1) and water content estimates using 
relations such as equation (3). It should be noted that ray-based tomographic 
techniques invert for slowness (i.e., the inverse of velocity). Alumbaugh et 
al. (2002) showed that water content estimates obtained from crosshole GPR 
have an RMS error of 0.03. Crosshole surveys are useful in that they can 
provide high-resolution two-dimensional images of water content at one 
point in time, or, when measured in a time-lapse sense, as a function of time 
(Hubbard et al., 1997; Eppstein and Dougherty, 1998; Binley et al., 2002; 
Day-Lewis et al., 2003). Although crosshole tomographic radar data are 
becoming more commonly used for moisture monitoring, the maximum 
borehole separation distance of about 15 m generally limits this technique to 
very local-scale investigations.  

An example of the use of crosshole radar data for estimating volumetric 
water content is illustrated using data collected within the porous granular 
vadose zone of the DOE Hanford Site in Washington (Ward et al., 2000; Gee 



Hydrogeophysical parameter estimation approaches for field scale 17
characterization 
 
and Ward, 2001). Neutron probe data were collected at this site, calibrated 
using gravimetric techniques, and interpreted in terms of volumetric water 
content (Ward et al., 2000). Tomographic GPR data were collected using the 
PulseEKKO 100 GPR system and 200 MHz antennas (Majer et al., 2000). 
Inversion of the tomographic travel time data was performed following 
Peterson (2001), and used with (1) to estimate dielectric constants. Equation 
(3) was used to convert the dielectric constant estimates to water content, 
with κs=5.6 (Kowalsky, 2004b), and φ=0.345 (inferred from saturated water 
content values of Zhang et al. (2004)). Figure 2a shows the 2-D distribution 
of estimated volumetric water content between two wells, and Figure 2b 
shows a comparison of neutron probe values collected from an access tube 
located close to X3 with the estimates of water content obtained from the 
tomographic pixels along the column located approximately 0.25 m away 
from X3 wellbore (to avoid the geophysical distortion commonly 
encountered at the wellbore location). This figure illustrates that a simple 
mixing model was sufficient for estimating water content in multiple 
directions with a reasonable accuracy, and thus highlights the use of GPR for 
direct mapping of water content.  
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Figure 2. (a) Volumetric water content estimated using tomographic radar data, (b) 
comparison of tomographic estimates and neutron probe measurements of water content near 

borehole X3. 

1.4 Integration methods 

By integration methods, we refer to approaches where the geophysical 
inversion is carried out independently of the hydrogeological data or where 
the hydrogeological inversion is carried out independently of the geophysical 
data. Integration methods are widely used and we discuss two types: co-
kriging and Bayesian approaches.  

1.4.1 Co-kriging 

Co-kriging (Deutsch and Journel, 1992) is a widely used method in 
geostatistics; it is essentially kriging conditioned on secondary information. 
Co-kriging is valid if we can represent the data such that measurement errors 
are Gaussian with a known variance; the area under study is stationary or 
stationary within large areas; and if the relation between the attributes is 
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linear and known. The estimate is an expected mean behavior and it should 
not be considered as a realistic model estimate of the true system properties. 
A classical application of co-kriging is to infer the transmissivity distribution 
of an aquifer using transmissivity estimates and hydraulic head data (e.g., 
Clifton and Neuman, 1982). Applications of co-kriging using 
hydrogeological and geophysical data include Doyen (1988), Pesti et al. 
(1993), Parks and Bentley (1996), Cassiani and Medina (1997), Lesch et al., 
(1995), Cassiani et al., (1998), and Gloaguen et al., (2001).  

Co-kriging is a straightforward method to apply and it is useful when the 
assumptions behind the method are valid and the type of information 
obtained is sufficient for project objectives. Drawbacks with the method are 
that the estimation variance only gives a qualitative estimate of model 
uncertainty and the estimated model is unrealistically smooth.  

1.4.2 Bayesian methods 

Bayes’ theorem is an appealing framework for integration of different types 
of data and a-priori information. General literature on Bayesian methods 
includes Press (1989) and Sivia (1996).  

A Bayesian formulation of data integration is more general than co-
kriging because it allows any prior distribution as well as non-linear 
likelihood functions. Chen et al. (2001) combined collocated geophysical 
estimates of GPR velocity, GPR attenuation, and seismic velocity with 
permeability estimates from flowmeter data to estimate the likelihood 
functions for the case of three geophysical data types. The likelihood 
function was estimated through a normal linear regression method. The prior 
was a kriged estimate of the permeability structure where the correlation 
structure has been estimated using available geophysical models and 
permeability data. This approach was used to estimate the permeability 
structure at the South Oyster Bacterial Transport Site (Chen et al., 2001; 
Hubbard et al., 2001).  

In the next section, we will give an example of an integration method for 
geochemical characterization. 

1.4.3 Example 2: Geochemical characterization 

Traditional methods for characterizing geochemical heterogeneity 
typically involve drilling a borehole and either retrieving a soil sample for 
laboratory analysis or collecting borehole logs within the hole. Although 
these methods are deemed necessary for collecting data to understand field-
scale bacterial transport processes, it is prohibitive to use them intensively 
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for collecting dense data to estimate geochemical parameters in a multi-
dimensional domain. Borehole-sampling methods combined with 
geophysical methods, hold potential for improved geochemical 
characterization, as is discussed below.  

This study demonstrates the use of GPR tomographic data collected at 
the DOE South Oyster Bacterial Transport Site in Virginia for estimating 
solid-phase Fe(II) and Fe(III) concentrations using a sampling-based 
Bayesian model. By exploiting the site-specific mutual dependence of GPR 
attenuation and extractable Fe(II) and Fe(III) concentrations on lithofacies 
(developed using co-located GPR attenuation pixel values and soil sample 
measurements), a Bayesian model was developed. Within the model, 
lithofacies and Fe(II) and Fe(III) concentrations at each pixel between the 
boreholes were considered as random variables. The borehole lithofacies 
measurements and crosshole GPR tomograms (Figure 3a) were considered 
as independent parameters. By conditioning all the unknowns to the 
available datasets, a joint posterior probability distribution function of those 
variables was defined at each location. Using a Markov chain Monte Carlo 
(MCMC) method, many samples of each unknown were obtained, which 
were subsequently used to calculate mean, variance, and predictive intervals 
for each unknown variable. 

Cross validation was performed based on data at the three wells, shown 
as wells D1, D2, and D3 in Figure 3, to assess the accuracy of the developed 
estimation method. Each well in turn was considered as a testing well and 
the other two wells as training wells. Cross validation results show that the 
geophysical data, constrained by lithofacies, have the potential for providing 
high-resolution, multi-dimensional information on extractable Fe(II) and 
Fe(III) concentrations at the South Oyster site. 

Figures 3(b)-(d) show the two dimensional images of the estimated mean 
logarithmic extractable Fe(II) concentrations, the probability of sand 
lithofacies, and the mean logarithmic extractable Fe(III) concentrations, 
respectively. It is evident that with the help of high-resolution GPR 
tomograms, the measurements of extractable Fe(II) and Fe(III) as well as 
lithofacies measurements can be extended to locations where direct 
measurements are not available. For details, see Chen et al. (2004). 
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Figure 3. (a) GPR attenuation; (b) estimated mean natural logarithmic Fe(II) concentrations; 
(c) frequency of sand (a frequency of 0.0 implies that lithofacies is mud, whereas a frequency 

of 1.0 implies that lithofacies is sand); (d) estimated mean natural logarithmic Fe(III) 
concentrations (from Chen et al., 2004). 

1.4.4 Discussion of integration methods 

Integration methods are relatively easy to implement because geophysical 
inversion and hydrogeological data processing are carried out separately. 
Furthermore, they rely on well-established techniques to integrate different 
types of data. This category of parameter estimation methods is relatively 
mature, and many successful case-histories exist (e.g., Cassiani and Medina, 
1997; Chen et al., 2001; Hubbard et al., 2001; Chen and Rubin, 2003; Chen 
et al., 2004). However, they have some inherent limitations. 

 
• The geophysical inverse models used in the estimation could 

potentially be improved if we incorporate hydrogeological data in 
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the geophysical inverse procedure because of information sharing. 
Integration methods do not take advantage of this opportunity.  

• Geophysical models typically have a spatially varying resolution. 
We should strive to constrain our hydrogeological models to the 
features that are well constrained in the geophysical inversion, and 
avoid interpreting phantom structures or features that are not related 
to hydrogeological properties. In principle, it may be possible to 
assign different weights to areas with different resolution. In 
practice, however, it is difficult to estimate those weights. This is a 
common problem in the interpretation of any geophysical model. 
One way to decrease the effects of this problem is to incorporate the 
geophysical inversion (Hyndman et al., 1994; Hyndman and 
Gorelick, 1996) or the geophysical model (Hyndman et al., 2000; 
Linde et al., 2004) as a part of the hydrogeological inversion (see 
section 1.6.1). 

• We often assume that the petrophysical relationship is stationary and 
use it over the entire spatial domain. In practice, non-stationary 
petrophysical relationships are common. For example, we know that 
intrinsic petrophysical relationships might show non-stationary 
behavior under certain conditions (e.g., Prasad, 2003; Yeh et al., 
2002). Even a perfect stationary intrinsic relationship may break 
down in the geophysical inversion (Day-Lewis and Lane, 2004). 
More discussion of stationarity was provided in section 1.2.2. 

• How should we estimate the model based petrophysical 
relationships? The natural choice is to compare collocated 
tomographic pixels and nearby borehole information (e.g., Chen et 
al., 2001; Hubbard et al., 2001). However, for ray-based tomography 
(GPR and seismic), the resolution of the inverted geophysical data at 
or near boreholes is worse than the resolution in the central parts of 
the tomograms (e.g., Day-Lewis and Lane, 2004), whereas the 
resolution is best close to the borehole in ERT applications. Thus, 
the location where co-located data are used to develop a site-specific 
relationship can impact its accuracy. In addition, the environment 
around the boreholes may be disturbed by the drilling, altering both 
the hydrogeological and the geophysical measurements and thus 
further complicating the task of estimating a valid petrophysical 
relationship throughout the tomogram.  

• In integration methods, we often assume that the resolution of the 
geophysical models is fine enough that the resulting hydrogeological 
parameter estimates can capture all important variations of 
hydrogeological parameters. This assumption might not be valid in 
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some applications because we know that the tomograms are smooth 
estimates of the true geophysical structure and that they have a 
limited resolution (e.g., Day-Lewis and Lane, 2004).   

 
 Moysey et al. (2005) presented a methodology to address some of the 

limitations associated with the development of petrophysical relationships. 
In their study, a stochastic calibration method was developed to estimate 
field-scale estimates of petrophysical relationships given a petrophysical 
relationship at the core scale. The methodology enlarged existing well-log 
data by generating additional conditional realizations of the property of 
interest (e.g., water content) using petrophysical relationships and 
geostatistical information. These realizations were mapped into geophysical 
realizations (e.g., dielectric constant) using the appropriate petrophysical 
relationship at the core scale (e.g., the CRIM formula). Synthetic 
geophysical surveys were performed and inversions of these realizations 
were made. Using this approach, average or pixel-specific field-scale 
petrophysical relationship could be developed that takes scaling, 
measurement errors, uncertainties in the petrophysical relationship, and the 
inversion process into account. Moysey et al. (2005) illustrated for a 
synthetic example how the methodology improved water content estimation 
using radar tomograms compared with the case where the underlying core 
scale relationship was applied to map the tomographic estimate into water 
content. However, in addition to borehole logs, reasonable knowledge is 
needed about the spatial correlation of the property of interest, the errors of 
the data, and the petrophysical relationship at the core-scale. Nonetheless, 
the study indicates how the hydrogeophysical community has recognized 
some of the limitations involved in earlier estimation approaches and how 
efforts are underway to overcome these obstacles. 

In the next section, we discuss how joint inversion methods can improve 
estimates compared with integration methods. However, the limitations 
listed above will always apply to some degree. 

1.5 Joint inversion methods 

In section 1.2.7, we gave the following definition: “by joint inversion 
methods we refer to cases where geophysical or hydrogeological inversion 
also utilizes hydrogeological or geophysical data, respectively”. Thus, joint 
inversion includes many different approaches for hydrogeophysical 
parameter estimation, including: 
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• geophysical inverse modeling that incorporates measurements of 

hydrogeological system properties; 
• geophysical inverse modeling that incorporates both measurements 

of hydrogeological system properties and measurements of 
dependent hydrogeological variables; 

• hydrogeological inversion that is regularized by geophysical models, 
and maybe also by measurements of hydrogeological system 
properties; or 

• both hydrogeological and geophysical inverse modeling are 
conditioned to both measurements of hydrogeological and 
geophysical system properties, as well as dependent hydrogeological 
and geophysical variables. These joint inversion models can either 
be updated simultaneously or in a sequential fashion. 

 
Joint inversion of hydrogeological and geophysical data sets is a current 

topic of research (e.g., Yeh et al., 2002). In the following, we present several 
examples in which joint inversion models were applied, including the 
zonation of a 3-D structure in a sandy aquifer (see section 1.5.1); estimation 
of flow parameters in the vadose zone (see section 1.5.2); and delineation of 
fracture zones (see section 1.5.3). Finally, we gather the experiences from 
these examples and other studies to make some concluding remarks on joint 
inversion methods.  

1.5.1 Example 3: Zonation of permeability 

Hyndman et al. (1994) performed coupled seismic and tracer test 
inversion in a 2-D synthetic aquifer in order to estimate zones of high and 
low permeability. The motivation for this study was that geophysical 
information might help in estimating the permeability structure, but that it is 
sometimes not justified to impose a known petrophysical relationship. The 
assumption behind their approach was that changes in lithology manifest as 
large changes in seismic velocity. Furthermore, they argued that 
groundwater flow is often predominantly controlled by large-scale 
heterogeneities. Their approach was based on a division of the seismic 
velocities into two classes. They applied their split inversion methodology 
(SIM), which essentially estimates a tomogram with zones delineating the 
spatial distribution of two lithological classes. The permeabilities of the 
classes were determined using tracer test data. The zonation was updated by 
minimizing the squared misfit of seismic travel times and tracer test data. 
The permeabilities within the classes were updated. This procedure was 
repeated in an iterative fashion.  
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Hyndman and Gorelick (1996) extended this analysis to 3-D and three 
unique lithological classes. They applied their method to the Kesterson 
aquifer. They observed a reasonably good data fit to the tracer test data. 
Hyndman et al. (2000) established a linear field scale model based 
petrophysical relationship between seismic velocity and permeability. They 
do this by transforming realizations of the seismic velocity structure at 
Kesterson into permeability. The relationship between seismic velocity and 
permeability has a correlation factor of 0.74, which can be compared with a 
relationship of 0.16 using borehole data. The tracer test data were better 
explained when the permeability realizations were performed using both 
hard permeability data and soft seismic slowness data (Figure 4b) compared 
with only permeability data (Figure 4a).  

 

Figure 4. Comparison of tracer concentration histories for the 1986 fluorescein test at the 
Kesterson aquifer simulated through permeability realizations (a) generated using 

permeability measurements alone and (b) generated using sequential Gaussian cosimulation 
with hard permeability data and soft seismic slowness data from a seismic realization 

(adopted from Hyndman et al., 2000). 
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1.5.2 Example 4: Vadose zone parameter estimation using time-

lapse GPR travel time data 

Crosshole GPR measurements are being used increasingly for monitoring 
transient flow processes in the vadose zone, thanks to their high sensitivity to 
pore water distribution in the subsurface (see equation (2)). As described in 
Section 1.3.1, tomographic inversion techniques (e.g., Peterson et al., 2001) 
are typically applied to crosshole GPR data sets to infer spatial distributions 
of electromagnetic velocity or dielectric constant, which can be related to 
water saturation through a petrophysical relationship, such as equation (3). 
However, while tomographic techniques are useful for gaining a qualitative 
understanding of flow processes (such as identifying flow directions and 
preferential flow paths), in general they cannot be used to obtain quantitative 
estimates of vadose zone flow parameters, such as permeability and the soil 
hydraulic parameters of the capillary pressure and relative permeability 
functions.  

In the present section, we describe an alternative approach for using 
crosshole GPR data that allows flow parameter distributions to be estimated 
in the vadose zone. This approach, described in detail by Kowalsky et al. 
(2004a), involves the joint inversion of hydrological and geophysical 
measurements collected during transient flow events. Geophysical 
observations are indirectly related to the hydraulic parameters: for any given 
soil hydraulic parameter estimates, a flow experiment is simulated and the 
resulting distributions of water saturation are used as input to simulate 
dependent geophysical variables. Inversion proceeds by perturbing the 
hydraulic parameters—which causes changes in the simulated water 
distributions and the subsequent dependent geophysical variables—until a 
good match between simulated and measured geophysical and hydrological 
data is achieved. 

The example considered by Kowalsky et al. (2004a) involves the case 
where the only non-uniform flow parameter is the permeability, and it can be 
treated as a log normally distributed space random function (SRF) with 
known patterns of spatial correlation. Through a maximum a posteriori 
(MAP) inversion framework that employs concepts from the pilot point 
method, the log permeability distribution and additional flow parameters can 
be estimated. This methodology allows for the generation of multiple 
parameter distributions that reproduce measurements of permeability, that 
contain the specified patterns of spatial correlation, and that are consistent 
with the hydrological and geophysical data; these parameter distributions can 
be used for hydrological modeling and also to calculate parameter 
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probability density functions, which provide a measure of parameter 
uncertainty.  

The GPR measurements considered in this example were those 
corresponding to the zero-offset profile (ZOP). In this case, the GPR 
antennae are kept in their respective wells at equal depths, and a single 
measurement is taken at each depth as the antennae are simultaneously 
lowered, yielding a data set that can be collected quickly but that does not 
contain as much information as if collected for two-dimensional 
tomographic reconstruction. One complication with multiple-offset gathers 
(MOG), where the antennae positions are varied such that a large number of 
angles pass the volume between the boreholes, is that data collection take a 
lot of time in relation to the infiltration processes under study. 

Results of the synthetic example indicate that inversion with ZOP GPR 
measurements allows for accurate prediction of the soil hydraulic 
parameters, even with moderate noise (assumed normally distributed) 
present in the GPR data. While GPR measurements offer the benefit of non-
intrusively monitoring changes in water saturation over large distances, 
measurements collected using ZOP are insensitive to lateral variations in 
flow. However, the combined use of ZOP measurements with local borehole 
saturation measurements greatly improves the accuracy and reduces the 
uncertainty of parameter estimates (see Figure 5).  

A main limitation in this example, but not in the approach itself, lies in 
the assumption that the permeability is the only non-uniform parameter, 
since in reality additional flow parameters can be non uniform. (It should be 
noted that information describing the spatial variability of soil hydraulic 
parameters is limited.) Additionally, it was assumed that the spatial 
correlation patterns of log permeability were known, as was the 
petrophysical model. The possibility of jointly estimating the parameters of 
the petrophysical model, using travel time measurements for arbitrary GPR 
antennae positions (data collection configurations other than the ZOP), and 
using real field data are addressed elsewhere (Kowalsky et al., 2004b). 
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(a) (b) (c)

 

Figure 5. Vertical cross-section (within 2-D model) showing true log permeability (gray) and 
mean surfaces obtained from 20 inversion realizations (black lines) for (a) conditional 

simulation (no inversion performed), (b) inversion using only ZOP GPR measurements, and 
(c) inversion using ZOP GPR measurements and local borehole saturation measurements. The 

estimation bounds are shown with dotted lines. 

1.5.3 Example 5: Fracture delineation using seismic slowness 

Characterization of fractured aquifers is important for contaminant 
remediation and water resources investigations. Due to the complexity of 
fracture formations, such characterization is very challenging using 
conventional methods, such as borehole logging. For successful 
characterization, integration of multiple sources of information is often 
needed.  

Crosshole seismic techniques have, among many other geophysical 
methods been found to be useful for fracture characterization. For instance, 
Cohen et al. (1995) showed that seismic tomography could be used to map 
permeable fracture zones based on data collected from the Raymond site in 
Virginia. Majer et al. (1997) used time-lapse seismic tomographic data 
before and after air injection to detect fracture channels at the Newkirk site 
in Oklahoma. Ellefsen et al. (2002) used seismic tomograms to map 
hydrogeological zonation at the Mirror Lake site in New Hampshire. Daley 
et al. (2003) demonstrated the potential of using seismic tomograms to 
monitor contaminant transport in fractured aquifers at the Idaho National 
Laboratory site. The main reason for the success of these examples is that 
seismic velocity is a function of the stiffness and density of the medium and 
fractures often cause a decrease of the stiffness of the medium and hence a 
reduction in seismic velocity. 
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However, in all those applications seismic travel times were first inverted 
and the resulting seismic velocity values were then used for hydrogeological 
characterization. This approach is limited for quantitative fracture 
characterization. First, the inverted seismic velocity is subject to uncertainty 
because of many reasons, such as source and receiver locations, 
measurement errors, deviations of boreholes, and choice of inversion 
methods. Second, petrophysical relations between seismic velocity and 
hydrogeological properties are non-unique. This is because seismic methods 
measure effective mechanical properties of the medium, and hydraulic 
behavior is not governed by the mechanical properties of the medium, 
although it is related (Majer et al., 1990). As indicated by many studies of 
fractured rock (e.g., Majer et al., 1990), only a part of the fractures are 
hydraulically conductive. Therefore, low seismic velocity does not 
necessarily correspond to high permeability. 

This example is an effort to address these problems. To circumvent these 
limitations, Chen et al. (2003) developed a new approach to integrate 
crosshole seismic and borehole flowmeter data for characterizing fractured 
aquifers. They considered seismic travel-time (rather than inverted seismic 
velocity) as data and considered seismic velocity and hydrogeological 
zonation indicator at each pixel as unknown random variables. They used a 
probabilistic petrophysical model with unknown parameters to link seismic 
velocity to hydrogeological properties. Within a Bayesian framework, the 
unknown variables and parameters were simultaneously estimated using a 
Markov chain Monte Carlo method by conditioning to crosshole seismic 
travel-time and borehole flowmeter data. Data collected at the US DOE 
NABIR Field Research Center (FRC) at the Oak Ridge National Laboratory 
in Tennessee were used to test the methodology. 

Figure 6 shows the estimated probabilities of being in the high 
permeability fracture zone along the cross-section between two wells. The 
red color represents high probability and the blue color represents low 
probability of being in the fracture zone. This image provides more 
information about hydrogeological zonation than using borehole flowmeter 
data only. If we use some cutoff value, for example 0.5 or 0.75, we can 
obtain an estimate of hydrogeological zonation in the fractured aquifer. We 
have also quantitatively compared our estimated results with the field tracer 
experiments, and they are consistent. For details, please see Chen at al. 
(2003).  



30 Niklas LindeP1P, Jinsong ChenP2P, Michael B. KowalskyP2P,
Susan HubbardP2P

 

 

Figure 6. The probability of high permeability fracture zone along a cross section (from Chen 
et al., 2003). 

1.5.4 Discussion of joint inversion methods 

Our wide definition of joint inversion methods includes all inversions 
where both hydrogeological and geophysical data are used. Advantages arise 
in joint inversion methods compared with integration methods because well-
posedness of the inverse problem generally improves when we add 
additional sources of information. A further advantage is that we can be very 
flexible in handling the petrophysical relationship within the inversion. Thus, 
we can test the influence of assuming a known petrophysical relationship by 
letting the parameters in the petrophysical relationship be free parameters in 
the inversion. We partially avoid scaling problems, and we can develop the 
petrophysical relationship at the field scale. However, we must note that 
measurements of hydrogeological system properties are also included in 
integration methods (see section 1.4) and the improvements in including 
them in the inversion remains to be tested. However, more fundamental 
improvements can be obtained through joint inversion using measurements 
of both geophysical and hydrogeological system variables. The reason is 
simply that if no measurements of dependent hydrogeological variables are 
included (e.g., tracer test data), all resolved structure away from 
measurements of hydrogeological system properties (e.g., permeability in 
boreholes) is due to what we resolve in the geophysical inversion. This 
means that we must assume stationary petrophysical relationships without 
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any good means of testing this assumption, and we must assume that all 
relevant hydrogeological structure has a geophysical signature. On the other 
hand, measurements of hydrogeological system variables give us the 
opportunity to simultaneously minimize the misfit of both the 
hydrogeological and geophysical data. 

1.6 SUMMARY AND OUTLOOK 

Because geophysical data provide additional information for 
hydrogeological parameter estimation, even if there is uncertainty in the 
geophysical data and models, hydrogeophysics offers the potential for 
improved subsurface characterization. The choice of different methods for 
integrating hydrogeological and geophysical data sets largely depends on the 
problem. Each method is based on assumptions, which should be 
acknowledged and examined. No method is good for all applications at the 
current stage. There is much room to improve our current methods for 
integration as hydrogeophysics is a new and interdisciplinary field. 

In this chapter, we have discussed choices that must be made in 
hydrogeophysical parameter estimation. We have also attempted to classify 
hydrogeophysical parameter estimation into three classes: direct mapping; 
integration methods, and joint inversion methods. We do not advocate one 
particular approach, but we emphasize the importance of stating our 
assumptions and have realistic expectations on the estimates. These 
expectations should be formed with regards to the available data, the goal of 
the study, and the hydrogeophysical parameter estimation approach. The 
justification of assumptions becomes very important when we want to 
estimate quantitative and detailed hydrogeological models, for example, that 
are to be used as input to flow simulations in a risk analysis.   

For a quantitative analysis, we should ideally know, among other factors: 
the errors of our data, the intrinsic petrophysical relationships, the space-
varying resolution of our individual inversions, scaling laws, the spatial 
correlation of different properties, discretization effects, effects of physical 
simplifications in the forward operators, and the small-scale variability. 
Naturally, sometimes the resulting estimates are relatively insensitive to 
errors in the description of these effects, and it might be justified to assume 
that we have a correct description. However, this needs to be checked, for 
example, by using synthetic examples or by studying similar cases in the 
literature.  

How can fundamental improvements in hydrogeophysical parameter 
estimation be realized? In this work we have focused on a given data set and 
problem. We have discussed how we could treat uncertain petrophysical 
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relationships, and in a qualitative manner discussed how different choices of 
for example objective functions or parameterization influence our estimate. 
We have also discussed different approaches to parameter estimation. 
However, careful survey design and surveying, together with a good 
conceptual understanding of the problem, of the petrophysical relationships, 
and the dominant processes are probably the most important factors in 
successful hydrogeophysical parameter estimation efforts. Obviously, even 
the most sophisticated approach cannot give a detailed estimate based on 
very noisy data, but it can provide reasonable error bounds. As 
hydrogeophysics evolves we must put more emphasis on minimizing, 
estimating, and parameterization of the errors in our measurements in order 
to improve the estimations and their uncertainty bounds. We need to 
improve our understanding of the validity of petrophysical relationships and 
maybe put more emphasis on methods that are more closely linked to 
groundwater flow and permeability, such as induced polarization (IP) and 
self-potential (SP) methods. 

In conclusion, our challenge is not only to develop new parameter 
estimation methods, but also to make sure that the assumptions we make are 
valid for a given application, or at least that they do not severely bias results. 
We will never obtain a true model of the earth’s structure, but hopefully we 
can obtain models that sufficiently meet our needs, even if they provide only 
limited information, such as bounds around the true rock properties. For this 
to happen, we must improve our estimations of measurement and modeling 
errors. We believe that approaches that we term joint inversion methods are 
well suited to improve error estimates, to increase our knowledge about the 
worth of different data types, and to design field campaigns that have the 
potential to give the best characterization for a given budget. However, joint 
inversion methods are in their infancy and the solution to many problems of 
practical importance can be adequately addressed using direct mapping or 
integration methods. 
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